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Abstract

The J!A1 three!term asymptotic solution for a crack in a power!law hardening material has been suc!
cessfully used to interpret the constraint e}ects due to _nite specimen geometry and loading con_gurations[
In the current paper\ we study the mechanics behavior of the J!A1 solution for a plane strain mode!I crack
in very low hardening materials[ The objective is to investigate the validity of the J!A1 characterization\ in
an approximate sense\ for the fully plastic crack!tip _elds in non!hardening materials[ In particular\ the
constraints at the crack tip for several conventional specimen geometries and loading con_gurations in non!
hardening materials are studied under the framework of the J!A1 description[ The results indicate that within
the plastic zone ahead of the crack tip the three!term solution can capture the essential features of fully
plastic _elds in various _nite size specimens in non!hardening materials[ Consequently A1 can be e}ectively
used as a constraint parameter in characterizing the crack!tip _eld in non!hardening materials[ Þ 0888
Elsevier Science Ltd[ All rights reserved[
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0[ Introduction

The e}ects of constraint on fracture or crack!tip _elds have been widely investigated[ Most of
the work aims principally at the power!law hardening materials[ Among the various constraint
parameters proposed\ the J!A1 approach o}ers a promising methodology to extend the current
single parameter\ J!based\ to a constraint!based\ two parameter method for characterizing the
fracture event[ The present authors "Chao and Zhu\ 0887# have summarized in detail the available
results of crack!tip _elds in hardening materials "e[g[ the requirements of HRR singularity or J!
dominance conditions# and investigated the J!A1 characterization of crack!tip _elds for the extent
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of J!A1 dominance and size requirements for fracture testing[ Under complete yielding\ the analyses
based on perfectly plastic _elds such as slip!line _elds could provide meaningful insights and
reference values for low hardening structural materials[ Moreover\ in non!hardening rigid!plastic
materials\ the slip!line _elds for stationary cracks are useful to the interpretation of growing cracks
"McClintock et al[\ 0884#[ As such\ it is essential to investigate fully plastic crack!tip _elds including
the constraint e}ects from geometry and loading con_gurations in non!hardening materials[

Under fully plastic conditions and using slip!line analysis for perfectly plastic materials\ McClin!
tock "0860# _rst showed that the stress and velocity _elds around a notch or crack tip depend on the
specimen geometry\ crack depth and loading con_guration[ Although the introduction of strain
hardening creates a region over which the HRR singularity dominates\ the size of this region strongly
depends on both geometry and loading con_gurations as well as crack length[ Thus\ generally
speaking\ a unique {single parameter| controlling the crack!tip _elds exists neither in hardening
materials nor in perfectly plastic materials[ In the limit of a non!strain!hardening material\ both Rice
and Rosengren "0857# and Hutchinson "0857# show that the HRR stress _eld approaches the Prandtl
slip!line _eld at the crack tip for full plasticity[ It was further veri_ed under small!scale yielding by
the _nite element numerical solutions of Rice and Tracey "0862# and Tracey "0865# which reveal the
essential feature of the Prandtl _eld[ However\ as pointed out by McClintock "0860#\ the Prandtl
_eld exists only in the crack tip of a double edge deeply notched plate in tension[ And the slip!line
_elds in di}erent notched specimens are generally di}erent and depend on the con_gurations and
the notch or crack length "Green and Hundy\ 0845^ Green\ 0845^ Ewing and Hill\ 0846^ Ewing\ 0857^
McClintock\ 0860#[ Wu et al[ "0889# summarized the slip!line _eld solutions available for several
commonly used fracture test specimens including both deep and shallow cracks[ They concluded
that the fully plastic crack!tip _elds are similar to the Prandtl _eld for specimens with high triaxiality\
e[g[ double edged deeply cracked tension\ deeply cracked bending and compact tension geometries[
But the full plastic!crack!tip _elds are considerably di}erent from the Prandtl _eld for specimens
with low triaxiality such as central cracked plate in tension[

Using a modi_ed boundary layer formulation\ Du and Hancock "0880# examined numerically
the e}ects of T!stress on the small!scale yielding near!tip _eld of a crack under plane strain
conditions for non!hardening materials[ They found that a positive T!stress can cause plasticity to
envelop the crack tip and yields the Prandtl _eld\ while a negative T!stress reduces the triaxiality
of the stress state at the crack tip and develops an incomplete Prandtl _eld[ Under large!scale
yielding\ Lee and Parks "0882# carried out the fully plastic analyses of single edge cracked specimens
subject to di}erent combined tension and bending for a su.ciently deep crack under plane strain
conditions[ Kim et al[ "0884# performed detailed _nite element analyses to study the e}ects of
crack depth on crack!tip constraint at full yielding for plane strain single!edge!cracked specimens
under pure bending[ These results indicate that only for deep cracks "such as a:W � 9[4 and 9[6#
under pure bending\ the values of crack!tip constraint remain {almost| constant for all range of
deformation levels\ and the crack!tip _elds are very close to that for the Prandtl _eld[

In the present work\ we investigate the behavior of the J!A1 three!term asymptotic solutions
"Yang et al[\ 0882# near a crack!tip when the hardening exponent n is very large[ These J!A1

solutions are then used\ in an approximate sense\ to analyze the constraint behavior at a crack tip
for di}erent specimen geometry and loading con_gurations in non!hardening materials[ The
objective is to study the validity of using the parameter A1 to quantify the constraint level at a
crack tip in non!hardening materials[
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1[ Fully plastic crack!tip _elds in non!hardening materials

Our attention is con_ned to mode!I crack problems in non!hardening materials under plane
strain conditions[ In this section\ the Prandtl _eld is summarized _rst^ then the J!A1 three!term
asymptotic solution for hardening material is reviewed^ and _nally the J!A1 three!term solution is
extended to nearly non!hardening materials[ This J!A1 three!term solution for nearly non!hard!
ening materials is then used to characterize the fully plastic crack tip _elds in non!hardening
materials presented in Section 2[

1[0[ Prandtl _eld

The Prandtl _eld "Prandtl\ 0819# is based on the assumption that plasticity completely surrounds
the crack tip[ On this basis the stresses can be solved by use of slip!line _eld theory starting from
the traction!free crack surface region to the symmetric plane of a tensile crack[ The entire _eld is
comprised of three plastic sectors over the crack tip in 9> ¾ u ¾ 079>\ here u is a polar angle
measured from the remaining ligament of the crack[ The three sectors are\ respectively\ a constant
stress sector in 9> ¾ u ¾ 34>\ a central fan sector in 34>¾ u ¾ 024> and another constant stress
sector in 024> ¾ u ¾ 079>[ The Prandtl stress _eld can be expressed\ in polar coordinates centered
at the crack tip\ as follows]

Sector I "9> ¾ u ¾ 34>#

srr � k"0¦p−cos 1u#

suu � k"0¦p¦cos 1u#

sru � k sin 1u "0#

Sector II "34> ¾ u ¾ 024>#

srr � suu � k"0¦2p:1−1u#

sru � k "1#

Sector III "024> ¾ u ¾ 079>#

srr � k"0¦cos 1u#

suu � k"0−cos 1u#

sru � k sin 1u "2#

where k � s9:z2 and s9 are the yield strengths in shear and in tension\ respectively[ The angular
distributions of these stresses are shown in Fig[ 0 and are independent of the radial distance r from
the crack tip[

1[1[ J!A1 three!term asymptotic solution

The general elasticÐplastic behavior of hardening materials described by the Ramberg!Osgood
power!law stress!strain relation can be written as
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Fig[ 0[ Stress distributions of Prandtl slip!line _eld[
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where o\ s are the strain and stress in uniaxial tension\ s9 is a reference stress\ o9 � s9:E is a
reference strain with E as Young|s modulus\ " for actual elastic!plastic solids\ s9 and o9 may be
taken to be the yield stress and the yield strain respectively#\ a is a material constant and n is the
strain hardening exponent[ From eqn "3# and by use of J1 deformation plasticity theory\ Yang et
al[ "0882# have developed the following three!term asymptotic crack!tip solutions
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where the angular functions s½ "k#
ij \ o½"k#

ij "in which o½"2#
ij means o½�ij "2##\ the stress power exponents sk

"s0 ³ s1 ³ s2# are only dependent of the hardening exponent n and independent of the other material
constants "i[e[ a\ o9\ s9# and the applied loading[ L is a characteristic length parameter which can
be chosen as the crack length a\ the specimen width W\ the thickness B\ or unity[ The parameters
A0 and s0 from the HRR _elds are given by
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A0 � 0
J

ao9s9InL1
−s0

\ s0 � −
0

n¦0
"6#

and s2 � 1s1−s0 for n − 2[ In eqn "6# J is the J!integral "Rice\ 0857# and In is a dimensionless
integration constant[ A1 is an undetermined parameter and may be related to the loading and
geometry of specimen[ All the non!dimensional functions in eqns "4# and "5# can be found in a
report by Chao and Zhang "0886#[

From eqns "4# and "5#\ the three!term expansion of the Mises e}ective stress se � z2sijsij:1
"where sij � sij−skkdij:2# can be expressed by
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where the angular functions of the e}ective stress\ s½ "k#
e "u#\ are determined by the angular stress

components s½ "k#
ij "u# in terms of the following formulae
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When A1 � 9\ the three!term asymptotic solutions "4#Ð"5# reduce to the leading!term HRR
singularity solutions[ In other words\ the _rst!order _eld of the three!term asymptotic solutions is
the HRR singularity _eld[ Chao et al[ "0883# has shown that for moderate to low hardening
materials\ i[e[ n − 2\ the above three!term asymptotic solutions "4#Ð"5# are plastic solutions and
can be used to characterize the stress\ strain and deformation in the crack tip region which is much
larger than the J!dominated region[ Furthermore J!A1 solution is universally valid in both SSY
and LSY\ low constraint and high constraint crack geometry\ and low and high strain hardening
materials "Chao and Zhu\ 0887#[

1[2[ The behavior of the three!term asymptotic solution in the limit n : �

As pointed out by McClintock "0860#\ neither the stress nor the strain distributions of the HRR
type solutions exist in the limit n : �[ The reason is that when the hardening exponent n is _nite\
the governing equations are elliptical^ but become hyperbolic for perfect plasticity "n : �#[ For
the same reason\ both the second and third order angular stress distributions could not exist in the
limit n : �[ Nevertheless\ the asymptotic behavior of every term in the three!term solution is
meaningful and useful in the study of crack problems in very slow hardening or nearly non!
hardening materials[
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Fig[ 1[ Ramberg Osgood stress!strain curves in uniaxial tension for hardening exponent n � 2\ 09\ 02\ 29 and 49[

From eqn "3# and letting a � 0\ the stressÐstrain relation curves with di}erent strain hardening
exponent n can be plotted[ As shown in Fig[ 1\ with the increase of the hardening exponent n\ the
strain!stress curves gradually become ~at[ We will choose n � 29 to approximate the mechanics
behavior of perfect plastic material[ Note that for n � 29 the di}erence in s:s9 between this material
and the perfectly plastic material is only about 6) at o:o9 � 09[ Therefore\ it is a reasonable
approximation[

For the J!A1 three!term asymptotic stress _eld in eqn "4#\ angular distributions of stress com!
ponents for each term are illustrated in Figs 2Ð4 which correspond to n � 2\ n � 02 and n � 29\
respectively[ Except for n � 2\ stress distributions for each term are nearly similar for n � 02 and
n � 29[ Furthermore\ the e}ective stress distributions for each term\ i[e[ eqns "8#Ð"00# as shown in
Fig[ 5 are also similar to each other for n � 04\ n � 29 and n � 49[ From Fig[ 5"a#\ it is observed
that the e}ective stress for the _rst term approaches the yield strength with the increase of the
hardening exponent n[ It is noted that through the comparison of the angular stress variation of
the _rst term in Fig[ 3"a# for n � 02 and the Prandtl _eld in Fig[ 0\ Hutchinson "0857# concluded
that the HRR _eld approaches to the Prandtl _eld in the limit of a non!strain!hardening material[
In fact\ further comparing Fig[ 4"a# with Fig[ 0\ one can observe that the angular stress _eld of the
_rst term in the three!term asymptotic solution\ eqn "4#\ for n � 29 is really very close to the
Prandtl _eld[ With these comparisons and the fact that the solution for non!hardening material
cannot be achieved by letting n : � in the asymptotic solution eqn "4#\ for strain hardening
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Fig[ 2[ Angular variations of stress _elds in the three!term asymptotic solution with n � 2] "a# _rst order _eld^ "b# second
order _eld^ "c# third order _eld[

materials\ we adopt the three!term solution\ eqn "4#\ with n � 29 as the approximate solution for
non!hardening materials[ In addition\ as n : � one has s0 � s1 � s2 � 9 and A0 � 0 from eqn "6#
and Yang et al[ "0882#[ Thus\ the stress _eld in eqn "4# for non!hardening materials can be
approximated by

sij

s9

3 s½ "0#
ij "u\ n � 29#¦A1s½

"1#
ij "u\ n � 29#¦A1

1s½
"2#
ij "u\n � 29# "01#

Furthermore\ since our emphasis is placed on the analysis of the constraint e}ect of non!hardening
material we could replace the _rst term in eqn "01# by the Prandtl solution eqns "0#Ð"2#\ to obtain
a better approximation to the limiting case n : �[ Denoting the non!dimensional form of the
Prandtl solution by s½Prandtl

ij "u# � sPrandtl
ij "u#:s9\ eqn "01# becomes
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Fig[ 3[ Angular variations of stress _elds in the three!term asymptotic solution with n � 02] "a# _rst order _eld^ "b#
second order _eld^ "c# third order _eld[
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Equation "02# will be used as an approximate solution for crack!tip _elds in the next section to
discuss the constraint e}ect in non!hardening materials[ Note that the parameter A1 in eqn "02#
can be determined at a _xed angle\ say u � 9>\ by matching one of stress components in eqn "02#
with that from a slip!line _eld or _nite element results for a perfectly plastic material[ For instance\
A1 can be solved from the following equation

suu

s9 bu�9

� s½Prandtl
uu "u � 9#¦A1s½

"1#
uu "u � 9\ n � 29#¦A1

1s½
"2#
uu "u � 9\ n � 29# "03#

in which suu is the crack opening stress ahead of a crack tip in the slip!line _eld solution or the
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Fig[ 4[ Angular variations of stress _elds in the three!term asymptotic solution with n � 29] "a# _rst order _eld^ "b#
second order _eld^ "c# third order _eld[

_nite element numerical solution for a given specimen[ Although not reported here\ our results
from the next section indicate that the approximate results from eqns "01# and "02# are nearly
identical[

2[ Constraints of crack!tip _eld characterized by the three!term solution

It should be noted that in eqn "01# or "02# the _rst term expresses the fully plastic near!tip stress
_eld for a semi!in_nite crack in a non!hardening material loaded in Mode I[ And the second and
the third terms\ through the parameter A1\ re~ect the in~uence of _nite!sized specimen geometry
and loading con_guration on the crack!tip _elds[ Therefore\ the parameter A1 can theoretically
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Fig[ 5[ The angular variations of e}ective stress se in the three!term asymptotic solution with n � 04\ 29 and 49] "a# _rst
order _eld^ "b# second order _eld^ "c# third order _eld[

represent the level of constraint and will be discussed in this section for various _nite!sized
specimens[

In this section we discuss the constraint e}ect starting from the small scale yielding case and
then to _nite!sized specimens[ For _nite!sized specimens\ it is generally acknowledged that a double
edge deeply!cracked plate in tension or a single edge deeply!cracked plate under pure bending is
the representative for high constraint specimen geometry[ And a center!cracked plate under remote
tension is the representative for low constraint specimen geometry[ The constraints of all other
commonly encountered specimen geometries generally fall in between these two extreme cases[ As
such\ our study for _nite!sized specimens include a double edge cracked plate in tension\ deep and
shallow edge cracked plates under pure bending\ and center cracked plate under remote tension to
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cover a broad range of constraints[ Additionally\ an edge cracked plate under combined tension
and bending is also investigated[ Particular emphasis is placed on how well the parameter A1 can
be used to quantify the constraint level over a wide range\ say\ from pure bending to pure tension[

2[0[ Small scale yieldin`

Under small scale yielding conditions\ the plastic zone of the crack tip is very small\ but indeed
encompasses the entire crack tip in practical structures[ In this circumstance\ the boundaries of a
_nite!sized specimen hardly a}ect the crack!tip _elds[ For non!hardening materials "n � �#\ the
_nite element results of Shih and German "0870# indicate that as the crack tip is approached the
tensile stress ahead of the crack tip in all three specimens "cracked bending bar\ single edge cracked
panel in tension and center cracked panel in tension# attain the limiting value of 1[86 s9 given by
the Prandtl _eld for the case of well!contained plasticity "see Fig[ 5 in Shih and German\ 0870#[
For the biaxiality parameter B � 9 "or T � 9#\ Betegon and Hancock "0880# and Du and Hancock
"0880# presented the crack!tip stress _eld which is close to the Prandtl _eld for the non!hardening
materials by using a boundary layer approach in their _nite element analysis[ Consequently\ it can
be concluded that the crack!tip _eld in small scale yielding is almost identical to the Prandtl _eld\
or from eqn "02# A1 � 9[ In other words\ under small scale yielding conditions the crack!tip _eld
is nearly una}ected by the constraints of specimen geometry and loading con_guration for non!
hardening materials[

2[1[ Double ed`e cracked specimen in tension

A double edge cracked plate specimen loaded by remote tension as sketched in Fig[ 6"a# is
considered\ in which 1W\ 1a\ 1b are the width of specimen\ the crack length and the ligament
length\ respectively[ When the material is a non!hardening perfectly plastic one\ the slip!line _eld
given by Ewing and Hill "0856# shows that for deep cracks or a:W × 9[773 the slip!line _eld is
restricted to the remaining ligament and is the well!known Prandtl _eld^ but for
9[669 ¾ a:W ¾ 9[773 the slip!line _eld is no longer restricted to the ligament and spreads to the
free surfaces[ For a:W ³ 9[669 there is no strict slip!line _eld solution[ Therefore\ for double edge
deeply cracked plate in tension with a:W × 9[773\ the fully plastic crack!tip _eld is the Prandtl
slip!line _eld in non!hardening material\ namely the stresses everywhere in fully yielded ligament
are syy �"1¦p#s9:z2\ sxx � ps9:z2\ and sxy � 9[ From eqn "03# we obtain A1 � 9 for this
geometry[ In addition to a:W ³ 9[773\ Ewing and Hill "0856# have also obtained the approximate
slip line _elds for full range of a:W ratios[ Using eqn "02# or "03#\ A1 values can be extracted for
these cases accordingly[

2[2[ Sin`le ed`e cracked specimen under bendin`

We consider a single edge cracked plate loaded in pure bending as sketched in Fig[ 6"b#\ in
which W\ a\ b are the width of specimen\ the crack length and the ligament length\ respectively[
For non!hardening materials\ Green and Hundy "0845# gave the slip!line solutions for this specimen
with deep crack[ Green "0845# further pointed out that when the crack length decreases to below
a critical length ac the slip!line _eld will be no longer restricted to the ligament\ but will spread to



X[K[ Zhu\ Y[J[ Chao : International Journal of Solids and Structures 25 "0888# 3386Ð34063497

Fig[ 6[ Cracked specimens considered in the present work[

the specimen free surface on either side of the notches[ Ewing "0857# later determined the critical
crack length as ac:W � 9[186 and gave the slip!line _eld solutions for a:W ¾ 9[186 by using a
matrix method[ Recently\ Kim et al[ "0885# presented the fully plastic crack!tip _elds for these
shallow!cracked specimens under pure bending through detailed _nite element analyses[ Using
their numerical results "see Fig[ 4 in Kim et al[\ 0885# and from eqn "03#\ we can determine the A1
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Fig[ 7[ Stress distributions of single edge cracked specimen in pure bending with a:W � 9[0] "a# solution from Finite
Element Method "FEM\ Kim et al[\ 0885#^ "b# Three!Term Solution "TTS\ A1 � −9[153#[

Fig[ 8[ Stress distributions of single edge cracked specimen in pure bending with a:W � 9[1] "a# solution from Finite
Element Method "FEM\ Kim et al[\ 0885#^ "b# Three!Term Solution "TTS\ A1 � −9[199#[

values for specimens with di}erent a:W ratios[ Once the A1 value is determined\ the angular crack!
tip stress distributions for a particular specimen can then be obtained from eqn "02#[

Figures 7Ð00 shows the angular distributions of the stress components srr\ suu and sru for this
single edge cracked specimen with a:W � 9[0\ 9[1\ 9[2\ 9[4 and 9[6 determined from eqn "02# and
from Kim et al[ "0885# by the _nite element method[ Figure 01 is the angular variation of the
hydrostatic stress or mean stress sm for the same specimen[ Comparing "a# to "b# in Figs 7Ð01\ it
can be concluded that "a# and J!A1 three!term solution captures the overall trends of the slip!line
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Fig[ 09[ Stress distributions of single edge cracked specimen in pure bending with a:W � 9[2] "a# solution from Finite
Element Method "FEM\ Kim et al[\ 0885#^ "b# Three!Term limit Solution "TTS\ A1 � −9[975#[

Fig[ 00[ Stress distributions of single edge cracked specimen in pure bending with a:W � 9[4 and 9[6] "a# solution from
Finite Element Method "FEM\ Kim et al[\ 0885#^ "b# Three!Term limit Solution "TTS\ A1 � −9[934#[

_elds for these cases^ "b# in the plastic sector\ i[e[ se:s9 � 0\ "or at least in the region 9> ¾ u ¾ 34>
because in this region the di}erences of the e}ective stress se between the three!term solution and
the perfectly plastic solution are within 4)# the J!A1 three!term solutions match quite well with
the _nite element solutions or the slip!line _elds^ "c# as the crack becomes {enough deep|\ i[e[
a:W − 9[4\ both the _nite element results and the J!A1 three!term solutions approach the Prandtl
_elds^ "d# the behavior of stress distributions at a:W � 9[2 or A1 � −9[975 is indeed the transition
between {deep| and {shallow| cracks for single edge cracked specimen geometry under bending[
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Fig[ 01[ Hydrostatic stresses of single edge cracked specimen in pure bending for di}erent ratios of a:W] "a# Finite
element method solution "FEM\ Kim et al[\ 0885#^ "b# Three!term solution "TTS\ A1 � −9[153\ −9[199\ −9[975 and
−9[934 corresponding to a:W � 9[0\ 9[1\ 9[2\ 9[4 and 9[6#[

Note that the A1 value increases with increasing a:W and approaches zero as coming closer to
the limiting case\ i[e[ the Prandtl _eld[ The A1 values corresponding to a:W � 9[0\ 9[1\ 9[2\ 9[4 and
9[6 in Figs 7"b#Ð00"b# are −9[153\ −9[199\ −9[975\ −9[934 and −9[934\ respectively[ These
values are plotted in Fig[ 02 and curve is _tted to yield

A1 � 6
−0[2184"a:W#1¦0[2648"a:W#−9[2864 for a:w ³ 9[4

−9[934 for a:w − 9[4
"04#

Figures 01\ 02 and eqn "04# indicate that A1 value increases with increasing constraint "e[g[ large
a:W or high stress triaxiality as re~ected by the high hydrostatic stress or mean stress sm at the
crack tip#[ Therefore\ a specimen having low "high# A1 value implies that it is a low "high# constraint
specimen geometry[

2[3[ Center cracked specimen under remote tension

In this section we consider a center cracked plate loaded by remote tension as sketched in Fig[
6"c#\ in which 1W\ 1a\ 1b are the width of specimen\ the crack length and the ligament length\
respectively[ For perfectly plastic materials\ McClintock "0860# gave the slip!line solution of this
specimen as

syy"u# � 1k ¼ 0[0436s9

sxx"u# � 9\ sxy"u# � 9
\ 9> ¾ u ¾ 34> and 9 ¾ x ¾ b "05#

For a non!hardening material\ using the ~ow theory of plasticity "i[e[ taking a � 0\ s9 � 334
MPa\ o9 � 9[991 in eqn "3# and a:W � 9[4# we performed the _nite element calculation for this
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Fig[ 02[ Variation of A1 parameter with the crack depth a:W at full plasticity for the single edged cracked specimen
under bending[

specimen geometry[ Our _nite element numerical solutions reveal that the stresses ahead of the
crack tip gradually decrease from those in the Prandtl _eld of eqn "0# toward the slip!line _eld of
eqn "05# with the increasing loading\ which is similar to the behavior of a hardening material of
n � 09 "cf Fig[ 7\ in O|Dowd and Shih\ 0881#[ At the limit load the stress distributions along the
crack ligament are illustrated in Fig[ 03[ These results are in good agreement with those shown in
Fig[ 34 of Shih et al[ "0868# for the same problem[ Comparing Fig[ 03 and eqn "05# at u � 9>\ one
can see that the stress distributions are close to the slip!line _eld of eqn "05# only at some distance
away from the crack tip[ Figure 04"a# illustrates the angular distributions of the stress components
around the crack tip at r ¼ 9[94b from the _nite element analysis[ This _gure shows that the _nite
element result "i[e[ solid curves# is only close to the slip!line _eld eqn "05# "i[e[ dashed curves# over
9> ¾ u ¾ 34>\ but not the same[

Using eqn "02# to demonstrate the constraint e}ect\ the curves in Fig[ 04"b# are the three!term
solutions from eqn "02# determined by matching the suu in the _nite element analysis at u � 9>
which yields A1 � −9[2366[ Comparing Fig[ 04"a# with Fig[ 04"b#\ one _nds that the trend of the
three!term solutions is similar to the numerical result and the slip!line _eld in the plastic region
9> ¾ u ¾ 34>[ Note that in the rigid!plastic analysis for the slip!line _eld the solution in the plastic
region could be unique while the stress distribution in the {rigid| region may not be unique[
Therefore\ the comparison in Fig[ 04"a# and "b# is only meaningful in the region of 9>¾ u ¾ 34>[
However\ even in the region 9> ¾ u ¾ 34>\ the _nite element results and the three!term solutions
shown in Figs 03 and 04 are not quite the same as the slip!line _elds of eqn "05#[ Further studies
can be found in Zhu and Chao "0888# for this particular specimen geometry[
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Fig[ 03[ FEM stress distributions along the crack ligament of center cracked panel in tension with a:W � 9[4[

Fig[ 04[ Angular stress distributions of center cracked panel in tension with a:W � 9[4] "a# FEM stresses at r � 9[94b
"dash curves represent the slip!line solution#^ "b# TTS stresses with A1 � −9[2366[

2[4[ Sin`le ed`e cracked panel under combined tension and bendin`

A single edge cracked plate loaded with combined tension "N# and bending "M# as sketched in
Fig[ 6"d# is considered in this section\ in which W\ a\ b are the width of specimen\ the crack length
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Fig[ 05[ Angular stress variations of single edge cracked panel with m � 9\ 9[098\ 9[221\ �] "a# solution from Finite
Element Method "FEM\ Lee and Parks\ 0882#^ "b# Three!Term Solution "TTS\ A1 � −9[255\ −9[203\ −9[105 and
−9[934 for the speci_ed m values#[

and the ligament length\ respectively[ For this specimen Lee and Parks "0882# introduced a
parameter

m �
M¦Na:1

NW

to measure the remotely applied tension!to!bending ratio[ Therefore\ the value of m lies between 9
and � with m � 9 being pure tension and m � � pure bending[ The angular distributions of the
circumferential stress at the crack tip from Lee and Parks "0882# for a:W � 9[4\ and m � 9\ 9[098\
9[221\ � are shown in Fig[ 05"a#[ Figure 05"b# shows the corresponding angular stress variations
of the three!term solution of eqn "02# where A1 � −9[255\ −9[203\ −9[105 and −9[934\ respec!
tively\ using eqn "03#[ As shown in Fig[ 05"a# and "b#\ the three!term solutions are very close to
the _nite element results by Lee and Parks "0882#[ Moreover\ both results show the crack opening
stress ahead of the crack tip increases from tension to bending which is similar to the behavior in
hardening materials[ Figure 06 illustrates the angular variation of the J!A1 three!term solutions in
single edge cracked panel[ Figure 06"a# is a bending dominated case\ with m � 9[221 and A1 � 9[105\
and Fig[ 06"b# is a tension dominated case\ with m � 9[098 and A1 � −9[203[ In Fig[ 06"a#\ the
stress distributions are somewhat similar to the Prandtl _eld[ In Fig[ 06"b#\ the crack!tip _elds
deviate considerably from the Prandtl _eld[

Note that A1 value increases with increasing m "or increased bending component# and approaches
−9[934 as coming closer to the pure bending case[ Using the J!A1 three!term solution of eqn "02#
to match the _nite element result\ one _nds that the A1 values corresponding to m � 9[9\ 9[098\
9[100\ 9[211\ 9[301\ 9[4 and � in Fig[ 00 of Lee and Parks "0882# are −9[255\ −9[203\ −9[152\
−9[105\ −9[062\ −9[025 and −9[934\ respectively[ These values are plotted in Fig[ 07 and the
curve is _tted to yield
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Fig[ 06[ Angular stress variations of single edge cracked panel using the three!term solutions] "a# the stress with m � 9[221
and A1 � −9[105^ "b# the stress with m � 9[098 and A1 � −9[203[

Fig[ 07[ Variation of A1 parameter with loading parameter m from low constraint of tension to high constraint of bending
for single edged cracked specimen with a:W � 9[4[

A1 � 6
−9[9271m1¦9[366m−9[2544 for m ¾ 9[4

−9[934 for m : �
"06#

Figure 07 shows the variation of A1 with the constraint for this specimen and loading con_guration[
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The top dashed line in this _gure corresponds to the Prandtl _eld[ Figures 05\ 07 and eqn "06#
show that for a _xed specimen "i[e[ for a _xed a:W# the parameter A1 or constraint increases as
the loading parameter m increases from zero "pure tension# to in_nity "pure bending#[

Note that eqn "06# is for a:W � 9[4 under various tension to bending ratios[ The same procedure
can certainly be repeated to generate similar expressions for this type of specimen with other a:W
ratios[

3[ Conclusions

The mechanics behavior of the J!A1 three!term solution\ originally developed for hardening
materials\ for a plane strain mode!I crack in very low hardening materials is _rst studied[ An
approximate solution for non!hardening materials is developed as an extension of the J!A1 solution[
This J!A1 solution is then applied to characterizing the constraint behavior of various specimen
geometries in non!hardening materials[ In particular\ the constraints at the crack tip for several
conventional specimen geometries and loading con_gurations in non!hardening materials are
studied under the framework of the J!A1 description[ The results indicate that "a# under small scale
yielding conditions or in the double edge deeply!cracked specimens under tension\ the crack!tip
_elds are the Prandtl _elds corresponding to A1 � 9\ and "b# within the plastic zone ahead of the
crack tip the J!A1 three!term solution can capture the essential features of the slip!line _elds in
various _nite!sized specimens in non!hardening materials[ Consequently A1 can be e}ectively used
as a constraint parameter in quantifying the constraint e}ects for both geometry and loading
con_guration\ and in characterizing the crack!tip _eld in non!hardening materials\ as in the case
of hardening materials[

It is interesting to note that mathematically the asymptotic nature of the series solution by Yang\
et al[ "0882# breaks down in the limit n : � since all terms in the series expansion become equally
important\ e[g[ s0 � s1 � s2 � [ [ [ : 9[ Thus\ to e}ectively reveal the mechanics behavior in the
non!hardening case\ all terms or many terms from the series expansion must be retained[ However\
as discovered by Yang\ et al[ "0882#\ all the higher order stress terms beyond the second term have
similar angular distributions for n × 2[ As a consequence\ the three!term solution\ which retains
only three terms from the asymptotic series as shown in eqns "4# and "5#\ is capable of representing
more than just three terms and can therefore yield a very good approximation to the full _eld
solution[ This argument has been demonstrated for hardening materials by the authors and co!
authors in their previous work and is further evidenced by the current paper for non!hardening
materials[
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