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Abstract

The J-A, three-term asymptotic solution for a crack in a power-law hardening material has been suc-
cessfully used to interpret the constraint effects due to finite specimen geometry and loading configurations.
In the current paper, we study the mechanics behavior of the J-A4, solution for a plane strain mode-I crack
in very low hardening materials. The objective is to investigate the validity of the J-A4, characterization, in
an approximate sense, for the fully plastic crack-tip fields in non-hardening materials. In particular, the
constraints at the crack tip for several conventional specimen geometries and loading configurations in non-
hardening materials are studied under the framework of the J-4, description. The results indicate that within
the plastic zone ahead of the crack tip the three-term solution can capture the essential features of fully
plastic fields in various finite size specimens in non-hardening materials. Consequently 4, can be effectively
used as a constraint parameter in characterizing the crack-tip field in non-hardening materials. © 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The effects of constraint on fracture or crack-tip fields have been widely investigated. Most of
the work aims principally at the power-law hardening materials. Among the various constraint
parameters proposed, the J-A, approach offers a promising methodology to extend the current
single parameter, J-based, to a constraint-based, two parameter method for characterizing the
fracture event. The present authors (Chao and Zhu, 1998) have summarized in detail the available
results of crack-tip fields in hardening materials (e.g. the requirements of HRR singularity or J-
dominance conditions) and investigated the J-A4, characterization of crack-tip fields for the extent
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of J-A, dominance and size requirements for fracture testing. Under complete yielding, the analyses
based on perfectly plastic fields such as slip-line fields could provide meaningful insights and
reference values for low hardening structural materials. Moreover, in non-hardening rigid-plastic
materials, the slip-line fields for stationary cracks are useful to the interpretation of growing cracks
(McClintock et al., 1995). As such, it is essential to investigate fully plastic crack-tip fields including
the constraint effects from geometry and loading configurations in non-hardening materials.

Under fully plastic conditions and using slip-line analysis for perfectly plastic materials, McClin-
tock (1971) first showed that the stress and velocity fields around a notch or crack tip depend on the
specimen geometry, crack depth and loading configuration. Although the introduction of strain
hardening creates a region over which the HRR singularity dominates, the size of this region strongly
depends on both geometry and loading configurations as well as crack length. Thus, generally
speaking, a unique ‘single parameter’ controlling the crack-tip fields exists neither in hardening
materials nor in perfectly plastic materials. In the limit of a non-strain-hardening material, both Rice
and Rosengren (1968) and Hutchinson (1968) show that the HRR stress field approaches the Prandtl
slip-line field at the crack tip for full plasticity. It was further verified under small-scale yielding by
the finite element numerical solutions of Rice and Tracey (1973) and Tracey (1976) which reveal the
essential feature of the Prandtl field. However, as pointed out by McClintock (1971), the Prandtl
field exists only in the crack tip of a double edge deeply notched plate in tension. And the slip-line
fields in different notched specimens are generally different and depend on the configurations and
the notch or crack length (Green and Hundy, 1956; Green, 1956; Ewing and Hill, 1957; Ewing, 1968;
McClintock, 1971). Wu et al. (1990) summarized the slip-line field solutions available for several
commonly used fracture test specimens including both deep and shallow cracks. They concluded
that the fully plastic crack-tip fields are similar to the Prandtl field for specimens with high triaxiality,
e.g. double edged deeply cracked tension, deeply cracked bending and compact tension geometries.
But the full plastic-crack-tip fields are considerably different from the Prandtl field for specimens
with low triaxiality such as central cracked plate in tension.

Using a modified boundary layer formulation, Du and Hancock (1991) examined numerically
the effects of T-stress on the small-scale yielding near-tip field of a crack under plane strain
conditions for non-hardening materials. They found that a positive T-stress can cause plasticity to
envelop the crack tip and yields the Prandtl field, while a negative T-stress reduces the triaxiality
of the stress state at the crack tip and develops an incomplete Prandtl field. Under large-scale
yielding, Lee and Parks (1993) carried out the fully plastic analyses of single edge cracked specimens
subject to different combined tension and bending for a sufficiently deep crack under plane strain
conditions. Kim et al. (1995) performed detailed finite element analyses to study the effects of
crack depth on crack-tip constraint at full yielding for plane strain single-edge-cracked specimens
under pure bending. These results indicate that only for deep cracks (such as a/W = 0.5 and 0.7)
under pure bending, the values of crack-tip constraint remain ‘almost’ constant for all range of
deformation levels, and the crack-tip fields are very close to that for the Prandtl field.

In the present work, we investigate the behavior of the J-4, three-term asymptotic solutions
(Yang et al., 1993) near a crack-tip when the hardening exponent #n is very large. These J-A4,
solutions are then used, in an approximate sense, to analyze the constraint behavior at a crack tip
for different specimen geometry and loading configurations in non-hardening materials. The
objective is to study the validity of using the parameter 4, to quantify the constraint level at a
crack tip in non-hardening materials.
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2. Fully plastic crack-tip fields in non-hardening materials

Our attention is confined to mode-I crack problems in non-hardening materials under plane
strain conditions. In this section, the Prandtl field is summarized first; then the J-A4, three-term
asymptotic solution for hardening material is reviewed; and finally the J-A4, three-term solution is
extended to nearly non-hardening materials. This J-A, three-term solution for nearly non-hard-
ening materials is then used to characterize the fully plastic crack tip fields in non-hardening
materials presented in Section 3.

2.1. Prandtl field

The Prandtl field (Prandtl, 1920) is based on the assumption that plasticity completely surrounds
the crack tip. On this basis the stresses can be solved by use of slip-line field theory starting from
the traction-free crack surface region to the symmetric plane of a tensile crack. The entire field is
comprised of three plastic sectors over the crack tip in 0° < 6 < 180°, here 0 is a polar angle
measured from the remaining ligament of the crack. The three sectors are, respectively, a constant
stress sector in 0° < 0 < 45°, a central fan sector in 45° < 0 < 135° and another constant stress
sector in 135° < 6 < 180°. The Prandtl stress field can be expressed, in polar coordinates centered
at the crack tip, as follows:

Sector I (0° < 6 < 45°)

0, = k(l+m—cos20)

090 = k(1+m+cos20)

0,9 = ksin 20 (1)
Sector I (45° < 0 < 135°)

O = g9 = k(1 +31/2—26)

o=k (2)
Sector I (135° < 6 < 180°)

0., = k(14+cos20)

a9 = k(1 —cos20)

G, = ksin 20 3)

where k = ao/ﬁ and o, are the yield strengths in shear and in tension, respectively. The angular
distributions of these stresses are shown in Fig. 1 and are independent of the radial distance r from
the crack tip.

2.2. J-A, three-term asymptotic solution

The general elastic—plastic behavior of hardening materials described by the Ramberg-Osgood
power-law stress-strain relation can be written as
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where ¢, o are the strain and stress in uniaxial tension, o, is a reference stress, g = a,/E is a
reference strain with £ as Young’s modulus, (for actual elastic-plastic solids, o, and & may be
taken to be the yield stress and the yield strain respectively), « is a material constant and # is the
strain hardening exponent. From eqn (4) and by use of J, deformation plasticity theory, Yang et
al. (1993) have developed the following three-term asymptotic crack-tip solutions

o

Iy, [<r> 500, n) + A, ( ) 62 (0.n) + A2 <r> (0, n)} )
Oy L

e Vs r (n—1)s; +5, r (n—1)s| +53
L= A4 [(L) & (0,n)+ A4, () &7(0,n)+ A3 < ) g (o, n)} (6)

oe,

where the angular functions &, &5 (in which & means &}), the stress power exponents s,
(s, < 8, < s3) are only dependent of the hardening exponent n and independent of the other material
constants (i.e. o, &, g,) and the applied loading. L is a characteristic length parameter which can
be chosen as the crack length a, the specimen width W, the thickness B, or unity. The parameters
A, and s, from the HRR fields are given by
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and s; = 2s,—s, for n = 3. In eqn (7) J is the J-integral (Rice, 1968) and I, is a dimensionless
integration constant. A, is an undetermined parameter and may be related to the loading and
geometry of specimen. All the non-dimensional functions in eqns (5) and (6) can be found in a
report by Chao and Zhang (1997).

From eqns (5) and (6), the three-term expansion of the Mises effective stress o, = \/3s;;8;,/2
(where s5;; = 0,,—0,40,/3) can be expressed by

Oe _ AR TV o) 2 (Y L)
GO_AI |:<L> Ge (0,”)+A2 <L> O-e (6,”)+A2 <L> Ue (6,”):| (8)

where the angular functions of the effective stress, & (), are determined by the angular stress
components &’ (0) in terms of the following formulae

500 =L = A ©)
700 = @R — (@ — o) +dotdad) (10)
BO(0) = 5 01— (@) —08) +4a1a1)

46D

1 (&@))2
&b
C

[(61) —6%3)? +4(613)°] —

+ (11)

8
When A, = 0, the three-term asymptotic solutions (5)—(6) reduce to the leading-term HRR
singularity solutions. In other words, the first-order field of the three-term asymptotic solutions is
the HRR singularity field. Chao et al. (1994) has shown that for moderate to low hardening
materials, i.e. n > 3, the above three-term asymptotic solutions (5)—(6) are plastic solutions and
can be used to characterize the stress, strain and deformation in the crack tip region which is much
larger than the J-dominated region. Furthermore J-4, solution is universally valid in both SSY
and LSY, low constraint and high constraint crack geometry, and low and high strain hardening
materials (Chao and Zhu, 1998).

2.3. The behavior of the three-term asymptotic solution in the limit n — o

As pointed out by McClintock (1971), neither the stress nor the strain distributions of the HRR
type solutions exist in the limit 7 — co. The reason is that when the hardening exponent # is finite,
the governing equations are elliptical; but become hyperbolic for perfect plasticity (7 — o0). For
the same reason, both the second and third order angular stress distributions could not exist in the
limit n — oo. Nevertheless, the asymptotic behavior of every term in the three-term solution is
meaningful and useful in the study of crack problems in very slow hardening or nearly non-
hardening materials.
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Fig. 2. Ramberg Osgood stress-strain curves in uniaxial tension for hardening exponent # = 3, 10, 13, 30 and 50.

From eqn (4) and letting o« = 1, the stress—strain relation curves with different strain hardening
exponent n can be plotted. As shown in Fig. 2, with the increase of the hardening exponent n, the
strain-stress curves gradually become flat. We will choose n = 30 to approximate the mechanics
behavior of perfect plastic material. Note that for » = 30 the difference in ¢/, between this material
and the perfectly plastic material is only about 7% at ¢/¢, = 10. Therefore, it is a reasonable
approximation.

For the J-A, three-term asymptotic stress field in eqn (5), angular distributions of stress com-
ponents for each term are illustrated in Figs 3—5 which correspond to n = 3, n = 13 and n = 30,
respectively. Except for n = 3, stress distributions for each term are nearly similar for » = 13 and
n = 30. Furthermore, the effective stress distributions for each term, i.e. eqns (9)—(11) as shown in
Fig. 6 are also similar to each other for n = 15, n = 30 and n = 50. From Fig. 6(a), it is observed
that the effective stress for the first term approaches the yield strength with the increase of the
hardening exponent . It is noted that through the comparison of the angular stress variation of
the first term in Fig. 4(a) for n» = 13 and the Prandtl field in Fig. 1, Hutchinson (1968) concluded
that the HRR field approaches to the Prandtl field in the limit of a non-strain-hardening material.
In fact, further comparing Fig. 5(a) with Fig. 1, one can observe that the angular stress field of the
first term in the three-term asymptotic solution, eqn (5), for n = 30 is really very close to the
Prandtl field. With these comparisons and the fact that the solution for non-hardening material
cannot be achieved by letting n — oo in the asymptotic solution eqn (5), for strain hardening
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Fig. 3. Angular variations of stress fields in the three-term asymptotic solution with n = 3: (a) first order field; (b) second
order field; (c) third order field.

materials, we adopt the three-term solution, eqn (5), with n = 30 as the approximate solution for
non-hardening materials. In addition, as n - co one has s, = s, = 53 = 0 and 4, = 1 from eqn (7)
and Yang et al. (1993). Thus, the stress field in eqn (5) for non-hardening materials can be
approximated by

g
;" ~6(0,n =30)+A4,67(0,n =30)+ 436’ (0,n = 30) (12)

0
Furthermore, since our emphasis is placed on the analysis of the constraint effect of non-hardening
material we could replace the first term in eqn (12) by the Prandtl solution eqns (1)—(3), to obtain
a better approximation to the limiting case n — oo. Denoting the non-dimensional form of the

Prandtl solution by &7""(0) = 677" (0)/0,, eqn (12) becomes
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Fig. 4. Angular variations of stress fields in the three-term asymptotic solution with n = 13: (a) first order field; (b)
second order field; (c) third order field.

% ~ GTEn(0) 4 4,62 (0, n = 30) + A26% (0.1 = 30) (13)
0

Equation (13) will be used as an approximate solution for crack-tip fields in the next section to
discuss the constraint effect in non-hardening materials. Note that the parameter 4, in eqn (13)
can be determined at a fixed angle, say 0 = 0°, by matching one of stress components in eqn (13)
with that from a slip-line field or finite element results for a perfectly plastic material. For instance,
A, can be solved from the following equation

Ton) gt = 0)+ 4,68 (0 = 0.n = 30)+ A265) (0 = 0, n = 30) (14)

00 Jg—o

in which oy, is the crack opening stress ahead of a crack tip in the slip-line field solution or the
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Fig. 5. Angular variations of stress fields in the three-term asymptotic solution with n = 30: (a) first order field; (b)
second order field; (c) third order field.

finite element numerical solution for a given specimen. Although not reported here, our results
from the next section indicate that the approximate results from eqns (12) and (13) are nearly
identical.

3. Constraints of crack-tip field characterized by the three-term solution

It should be noted that in eqn (12) or (13) the first term expresses the fully plastic near-tip stress
field for a semi-infinite crack in a non-hardening material loaded in Mode I. And the second and
the third terms, through the parameter A,, reflect the influence of finite-sized specimen geometry
and loading configuration on the crack-tip fields. Therefore, the parameter 4, can theoretically
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Fig. 6. The angular variations of effective stress o in the three-term asymptotic solution with n = 15, 30 and 50: (a) first
order field; (b) second order field; (c) third order field.

represent the level of constraint and will be discussed in this section for various finite-sized
specimens.

In this section we discuss the constraint effect starting from the small scale yielding case and
then to finite-sized specimens. For finite-sized specimens, it is generally acknowledged that a double
edge deeply-cracked plate in tension or a single edge deeply-cracked plate under pure bending is
the representative for high constraint specimen geometry. And a center-cracked plate under remote
tension is the representative for low constraint specimen geometry. The constraints of all other
commonly encountered specimen geometries generally fall in between these two extreme cases. As
such, our study for finite-sized specimens include a double edge cracked plate in tension, deep and
shallow edge cracked plates under pure bending, and center cracked plate under remote tension to
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cover a broad range of constraints. Additionally, an edge cracked plate under combined tension
and bending is also investigated. Particular emphasis is placed on how well the parameter 4, can
be used to quantify the constraint level over a wide range, say, from pure bending to pure tension.

3.1. Small scale yielding

Under small scale yielding conditions, the plastic zone of the crack tip is very small, but indeed
encompasses the entire crack tip in practical structures. In this circumstance, the boundaries of a
finite-sized specimen hardly affect the crack-tip fields. For non-hardening materials (n = o0), the
finite element results of Shih and German (1981) indicate that as the crack tip is approached the
tensile stress ahead of the crack tip in all three specimens (cracked bending bar, single edge cracked
panel in tension and center cracked panel in tension) attain the limiting value of 2.97 g, given by
the Prandtl field for the case of well-contained plasticity (see Fig. 6 in Shih and German, 1981).
For the biaxiality parameter B = 0 (or T = 0), Betegon and Hancock (1991) and Du and Hancock
(1991) presented the crack-tip stress field which is close to the Prandtl field for the non-hardening
materials by using a boundary layer approach in their finite element analysis. Consequently, it can
be concluded that the crack-tip field in small scale yielding is almost identical to the Prandtl field,
or from eqn (13) 4, = 0. In other words, under small scale yielding conditions the crack-tip field
is nearly unaffected by the constraints of specimen geometry and loading configuration for non-
hardening materials.

3.2. Double edge cracked specimen in tension

A double edge cracked plate specimen loaded by remote tension as sketched in Fig. 7(a) is
considered, in which 2W, 2a, 2b are the width of specimen, the crack length and the ligament
length, respectively. When the material is a non-hardening perfectly plastic one, the slip-line field
given by Ewing and Hill (1967) shows that for deep cracks or a/W > 0.884 the slip-line field is
restricted to the remaining ligament and is the well-known Prandtl field; but for
0.770 < a/W < 0.884 the slip-line field is no longer restricted to the ligament and spreads to the
free surfaces. For a/W < 0.770 there is no strict slip-line field solution. Therefore, for double edge
deeply cracked plate in tension with a/W > 0.884, the fully plastic crack-tip field is the Prandtl
slip-line field in non-hardening material, namely the stresses everywhere in fully yielded ligament
are g, :(2+n)ao/\/§, 0. = n0y/</3, and o,, = 0. From eqn (14) we obtain 4, =0 for this
geometry. In addition to a/W < 0.884, Ewing and Hill (1967) have also obtained the approximate
slip line fields for full range of a/W ratios. Using eqn (13) or (14), A, values can be extracted for
these cases accordingly.

3.3. Single edge cracked specimen under bending

We consider a single edge cracked plate loaded in pure bending as sketched in Fig. 7(b), in
which W, a, b are the width of specimen, the crack length and the ligament length, respectively.
For non-hardening materials, Green and Hundy (1956) gave the slip-line solutions for this specimen
with deep crack. Green (1956) further pointed out that when the crack length decreases to below
a critical length q, the slip-line field will be no longer restricted to the ligament, but will spread to
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Fig. 7. Cracked specimens considered in the present work.

the specimen free surface on either side of the notches. Ewing (1968) later determined the critical
crack length as a /W = 0.297 and gave the slip-line field solutions for a/W < 0.297 by using a
matrix method. Recently, Kim et al. (1996) presented the fully plastic crack-tip fields for these
shallow-cracked specimens under pure bending through detailed finite element analyses. Using
their numerical results (see Fig. 5 in Kim et al., 1996) and from eqn (14), we can determine the 4,
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Element Method (FEM, Kim et al., 1996); (b) Three-Term Solution (TTS, 4, = —0.264).
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Fig. 9. Stress distributions of single edge cracked specimen in pure bending with a/W = 0.2: (a) solution from Finite
Element Method (FEM, Kim et al., 1996); (b) Three-Term Solution (TTS, 4, = —0.200).

values for specimens with different a/ ¥ ratios. Once the 4, value is determined, the angular crack-
tip stress distributions for a particular specimen can then be obtained from eqn (13).

Figures 8—11 shows the angular distributions of the stress components a,,, 6y and a,, for this
single edge cracked specimen with a/W = 0.1, 0.2, 0.3, 0.5 and 0.7 determined from eqn (13) and
from Kim et al. (1996) by the finite element method. Figure 12 is the angular variation of the
hydrostatic stress or mean stress g, for the same specimen. Comparing (a) to (b) in Figs 812, it
can be concluded that (a) and J-4, three-term solution captures the overall trends of the slip-line
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Fig. 11. Stress distributions of single edge cracked specimen in pure bending with a/W = 0.5 and 0.7: (a) solution from
Finite Element Method (FEM, Kim et al., 1996); (b) Three-Term limit Solution (TTS, 4, = —0.045).

fields for these cases; (b) in the plastic sector, i.e. o./o, = 1, (or at least in the region 0° < 0 < 45°
because in this region the differences of the effective stress o, between the three-term solution and
the perfectly plastic solution are within 5%) the J-A, three-term solutions match quite well with
the finite element solutions or the slip-line fields; (c) as the crack becomes ‘enough deep’, i.c.
a/W = 0.5, both the finite element results and the J-A4, three-term solutions approach the Prandtl
fields; (d) the behavior of stress distributions at a/W = 0.3 or 4, = —0.086 is indeed the transition
between ‘deep’ and ‘shallow’ cracks for single edge cracked specimen geometry under bending.
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Fig. 12. Hydrostatic stresses of single edge cracked specimen in pure bending for different ratios of a/W: (a) Finite
element method solution (FEM, Kim et al., 1996); (b) Three-term solution (TTS, 4, = —0.264, —0.200, —0.086 and
—0.045 corresponding to a/W = 0.1, 0.2, 0.3, 0.5 and 0.7).

Note that the 4, value increases with increasing a/W and approaches zero as coming closer to
the limiting case, i.e. the Prandtl field. The 4, values corresponding to a/W = 0.1, 0.2, 0.3, 0.5 and
0.7 in Figs 8(b)-11(b) are —0.264, —0.200, —0.086, —0.045 and —0.045, respectively. These
values are plotted in Fig. 13 and curve is fitted to yield

{—1.3295(a/W)2+1.3759(a/W)—0.3975 for a/w<0.5

a/w = 0.5

=

(15)

—0.045 for

Figures 12, 13 and eqn (15) indicate that A4, value increases with increasing constraint (e.g. large
a/W or high stress triaxiality as reflected by the high hydrostatic stress or mean stress o, at the
crack tip). Therefore, a specimen having low (high) 4, value implies that it is a low (high) constraint
specimen geometry.

3.4. Center cracked specimen under remote tension

In this section we consider a center cracked plate loaded by remote tension as sketched in Fig.
7(c), in which 2W, 2a, 2b are the width of specimen, the crack length and the ligament length,
respectively. For perfectly plastic materials, McClintock (1971) gave the slip-line solution of this
specimen as

0,,(0) =2k ~ 1.15470,
0:(0) =0, 0,(0)=0

For a non-hardening material, using the flow theory of plasticity (i.e. taking oo = 1, g, = 445

MPa, ¢, = 0.002 in eqn (4) and a/W = 0.5) we performed the finite element calculation for this

0°<0<45° and 0<x<b

(16)
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Fig. 13. Variation of A, parameter with the crack depth a/W at full plasticity for the single edged cracked specimen
under bending.

specimen geometry. Our finite element numerical solutions reveal that the stresses ahead of the
crack tip gradually decrease from those in the Prandtl field of eqn (1) toward the slip-line field of
eqn (16) with the increasing loading, which is similar to the behavior of a hardening material of
n = 10 (cf Fig. 8, in O’Dowd and Shih, 1992). At the limit load the stress distributions along the
crack ligament are illustrated in Fig. 14. These results are in good agreement with those shown in
Fig. 45 of Shih et al. (1979) for the same problem. Comparing Fig. 14 and eqn (16) at § = 0°, one
can see that the stress distributions are close to the slip-line field of eqn (16) only at some distance
away from the crack tip. Figure 15(a) illustrates the angular distributions of the stress components
around the crack tip at r ~ 0.05b from the finite element analysis. This figure shows that the finite
element result (i.e. solid curves) is only close to the slip-line field eqn (16) (i.e. dashed curves) over
0° < 0 < 45°, but not the same.

Using eqn (13) to demonstrate the constraint effect, the curves in Fig. 15(b) are the three-term
solutions from eqn (13) determined by matching the oy, in the finite element analysis at 0 = 0°
which yields 4, = —0.3477. Comparing Fig. 15(a) with Fig. 15(b), one finds that the trend of the
three-term solutions is similar to the numerical result and the slip-line field in the plastic region
0° < 0 < 45°. Note that in the rigid-plastic analysis for the slip-line field the solution in the plastic
region could be unique while the stress distribution in the ‘rigid’ region may not be unique.
Therefore, the comparison in Fig. 15(a) and (b) is only meaningful in the region of 0° < 0 < 45°.
However, even in the region 0° < 0 < 45°, the finite element results and the three-term solutions
shown in Figs 14 and 15 are not quite the same as the slip-line fields of eqn (16). Further studies
can be found in Zhu and Chao (1999) for this particular specimen geometry.
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Fig. 14. FEM stress distributions along the crack ligament of center cracked panel in tension with /W = 0.5.
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Fig. 15. Angular stress distributions of center cracked panel in tension with a/W = 0.5: (a) FEM stresses at r = 0.05b
(dash curves represent the slip-line solution); (b) TTS stresses with 4, = —0.3477.

3.5. Single edge cracked panel under combined tension and bending

A single edge cracked plate loaded with combined tension (&) and bending (M) as sketched in
Fig. 7(d) is considered in this section, in which W, a, b are the width of specimen, the crack length
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Fig. 16. Angular stress variations of single edge cracked panel with ¢ =0, 0.109, 0.332, co: (a) solution from Finite
Element Method (FEM, Lee and Parks, 1993); (b) Three-Term Solution (TTS, 4, = —0.366, —0.314, —0.216 and
—0.045 for the specified i values).

and the ligament length, respectively. For this specimen Lee and Parks (1993) introduced a
parameter

_ M+Naf2
F="nw

to measure the remotely applied tension-to-bending ratio. Therefore, the value of u lies between 0
and oo with y = 0 being pure tension and p = oo pure bending. The angular distributions of the
circumferential stress at the crack tip from Lee and Parks (1993) for a/W = 0.5, and ¢ = 0, 0.109,
0.332, oo are shown in Fig. 16(a). Figure 16(b) shows the corresponding angular stress variations
of the three-term solution of eqn (13) where 4, = —0.366, —0.314, —0.216 and —0.045, respec-
tively, using eqn (14). As shown in Fig. 16(a) and (b), the three-term solutions are very close to
the finite element results by Lee and Parks (1993). Moreover, both results show the crack opening
stress ahead of the crack tip increases from tension to bending which is similar to the behavior in
hardening materials. Figure 17 illustrates the angular variation of the J-A4, three-term solutions in
single edge cracked panel. Figure 17(a) is a bending dominated case, with ¢ = 0.332 and 4, = 0.216,
and Fig. 17(b) is a tension dominated case, with y = 0.109 and 4, = —0.314. In Fig. 17(a), the
stress distributions are somewhat similar to the Prandtl field. In Fig. 17(b), the crack-tip fields
deviate considerably from the Prandtl field.

Note that 4, value increases with increasing u (or increased bending component) and approaches
—0.045 as coming closer to the pure bending case. Using the J-A4, three-term solution of eqn (13)
to match the finite element result, one finds that the A4, values corresponding to u = 0.0, 0.109,
0.211, 0.322, 0.412, 0.5 and oo in Fig. 11 of Lee and Parks (1993) are —0.366, —0.314, —0.263,
—0.216, —0.173, —0.136 and —0.045, respectively. These values are plotted in Fig. 18 and the
curve is fitted to yield
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Fig. 17. Angular stress variations of single edge cracked panel using the three-term solutions: (a) the stress with ¢ = 0.332
and 4, = —0.216; (b) the stress with u = 0.109 and 4, = —0.314.
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Fig. 18. Variation of 4, parameter with loading parameter u from low constraint of tension to high constraint of bending
for single edged cracked specimen with a/W = 0.5.
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Figure 18 shows the variation of 4, with the constraint for this specimen and loading configuration.
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The top dashed line in this figure corresponds to the Prandtl field. Figures 16, 18 and eqn (17)
show that for a fixed specimen (i.e. for a fixed a/W) the parameter 4, or constraint increases as
the loading parameter u increases from zero (pure tension) to infinity (pure bending).

Note that eqn (17) is for a/ W = 0.5 under various tension to bending ratios. The same procedure
can certainly be repeated to generate similar expressions for this type of specimen with other a/W
ratios.

4. Conclusions

The mechanics behavior of the J-A4, three-term solution, originally developed for hardening
materials, for a plane strain mode-I crack in very low hardening materials is first studied. An
approximate solution for non-hardening materials is developed as an extension of the J-4, solution.
This J-A, solution is then applied to characterizing the constraint behavior of various specimen
geometries in non-hardening materials. In particular, the constraints at the crack tip for several
conventional specimen geometries and loading configurations in non-hardening materials are
studied under the framework of the J-A, description. The results indicate that (a) under small scale
yielding conditions or in the double edge deeply-cracked specimens under tension, the crack-tip
fields are the Prandtl fields corresponding to 4, = 0, and (b) within the plastic zone ahead of the
crack tip the J-A, three-term solution can capture the essential features of the slip-line fields in
various finite-sized specimens in non-hardening materials. Consequently 4, can be effectively used
as a constraint parameter in quantifying the constraint effects for both geometry and loading
configuration, and in characterizing the crack-tip field in non-hardening materials, as in the case
of hardening materials.

It is interesting to note that mathematically the asymptotic nature of the series solution by Yang,
et al. (1993) breaks down in the limit #» — oo since all terms in the series expansion become equally
important, e.g. s, =5, =53 = ... — 0. Thus, to effectively reveal the mechanics behavior in the
non-hardening case, all terms or many terms from the series expansion must be retained. However,
as discovered by Yang, et al. (1993), all the higher order stress terms beyond the second term have
similar angular distributions for n > 3. As a consequence, the three-term solution, which retains
only three terms from the asymptotic series as shown in eqns (5) and (6), is capable of representing
more than just three terms and can therefore yield a very good approximation to the full field
solution. This argument has been demonstrated for hardening materials by the authors and co-
authors in their previous work and is further evidenced by the current paper for non-hardening
materials.
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